	_		
		_	
<			
		_	
		•	
		_	
		_	
		7	
		7	
_		7	
		٦.	
		7	
i		7	
í	1	7	
i	1	ì	
í	ī	ì	
L	ı	i	
L	ı	i	
L	ı	Ĺ	
L	ı	i	
L	ı	i	
L	ı	i	
L	ı	i	
L	ı	L	
L	ı	L	
L	ı	i	
L	ı	L	
L	ı	L	
L	ı	L	
L	ı	L	
L	ı	L	
L	ı	L	
L	ı	L	

Question Booklet No.:		1	TI	G/20	001
		A	JUK	X/Z(<i>J</i> Z1
	Register Number				

2021 GEOLOGY (Degree Standard)

Duration: Three Hours

[Total Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. You will be supplied with this question booklet 15 minutes prior to the commencement of the examination.
- 2. This question booklet contains 200 questions. Before answering the questions, you shall check whether all the questions are printed serially and ensure that there are no blank pages in the question booklet. If any defect is noticed in the question booklet, it shall be reported to the invigilator within the first 10 minutes and get it replaced with a complete question booklet. If the defect is reported after the commencement of the examination, it will not be replaced.
- 3. Answer all the questions. All the questions carry equal marks.
- 4. You must write your register number in the space provided on the top right side of this page. Do not write anything else on the question booklet.
- 5. An answer sheet will be supplied to you separately by the room invigilator to shade the answers. Instructions regarding filling of answers etc., which are to be followed mandatorily, are provided in the answer sheet and in the memorandum of admission (Hall Ticket).
- 6. You shall write and shade your question booklet number in the space provided on page one of the answer sheet with BLACK INK BALL POINT PEN. If you do not shade correctly or fail to shade the question booklet number, your answer sheet will be invalidated.
- 7. Each question comprises of five responses (answers): i.e. (A), (B), (C), (D) and (E). You have to select ONLY ONE correct answer from (A) or (B) or (C) or (D) and shade the same in your answer sheet. If you feel that there are more than one correct answer, shade the one which you consider the best. If you do not know the answer, you have to mandatorily shade (E). In any case, choose ONLY ONE answer for each question. If you shade more than one answer for a question, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 8. You should not remove or tear off any sheet from this question booklet. You are not allowed to take this question booklet and the answer sheet out of the examination room during the time of the examination.

 After the examination, you must hand over your answer sheet to the invigilator. You are allowed to take the question booklet with you only after the examination is over.
- 9. You should not make any marking in the question booklet except in the sheets before the last page of the question booklet, which can be used for rough work. This should be strictly adhered to.
- 10. Failure to comply with any of the above instructions will render you liable for such action as the Commission may decide at their discretion.

SPACE FOR ROUGH WORK

1.	The	metasomatic changes are also terme	ed as	
	(A)	Kaolinisation	(B)	Greisening
	(C)	Dolomitization	(D)	Granulation
	(E)	Answer not known		
2.	The	dovolonmost Chief		
- .		development of tectonic is widesprea		
	(A)	Dynamothermal	(B)	Plutonic
	(C)	Cataclastic	(D)	Pyroclastic
	(E)	Answer not known		
3.	The	Chief chemically active fluid in meta	mor	ohism is
	(A)	Carbon dioxide	(B)	Water
	(C)	Boric acid	(D)	Hydrofluoric acid
	(E)	Answer not known		
4.	Cons	sider the following pairs :		
	1.	Argillaceous lime stone	_	Pure lime stone
	II.	Kankar	_	Carbonate material
	· III.	Lithographic lime stone	-	Lime stone contain clay
	Whic	ch pair is correct?		
	(A)	I only	(B)	I and III
	(C)	III only	DY	II only
	(E)	Answer not known		
	Whic	h clay have high aluming and placti	~:.4.~9	
		th clay have high alumina and plastic	- T	
	(A)	China Clay	(B)	Fire clay
	(C)	Pottery clay	(D)	Tillite
	(E)	Answer not known		

- 6. Medium sand grain size measured between
 - (A) $2 \text{ mm} \text{ and } \frac{1}{2} \text{ mm}$

(B) $\frac{1}{4}$ mm and $\frac{1}{16}$ mm

(C) $\sqrt{\frac{1}{2}}$ mm and $\frac{1}{4}$ mm

(D) 1 mm and $\frac{1}{2}$ mm

- (E) Answer not known
- 7. Argillaceous rocks are made up of
 - (A) Sand grade

(B) Sand and silt

(C) Clay particles

(D) Boulders

- (E) Answer not known
- 8. Antigenic deposits are
 - (A) Formed on the spot
 - (C) Detrital
 - (E) Answer not known

- (B) Originated elsewhere
- (D) Originated everywhere
- 9. Quartz is almost the only component in
 - (A) Metaquartzites

(B) Orthoquartzites

- (C) Quartzose sand stones
- D) Quartzarenite

- (E) Answer not known
- 10. The process whereby foreign rock material, either in liquid or solid form, is incorporated within the magma is known as

(A) Assimilation

(B) Differentiation

(C) Segregation

(D) Crystallization

11.		, ——— and ———	– are i	felsic minerals.
	(A)	Quartz, Albite, Hypersthene		
	(B)	Quartz, Albite, Hornblende		
	(C)	Quartz, Orthoclase, Leucite		
	(D)	Quartz, Orthoclase, Olivine		
	(E)	Answer not known		
12.	Crys	stals better developed in two spati	al dire	ection than in the third may be referred
	(A)	Irregular	(TD)	
	(C)	Tabular	(B)	Elongated
	(E)	Answer not known	(D)	Prismatic
l3.	The	Rocks purely made of glass are cal	led by	special term known as
	(A)	Bostonite	(B)	Obsidian
	(C)	Tonalite	(D)	Trachyte
	(E)	Answer not known		
4.	Plagi	ioclase becomes the predominant folled	eldspa	r in nepheline and bearing rock, then it
	(A)	Teschenite	(B X	Theralite
	(C)	Wordmurkite	(D)	Pulaskite
	(E)	Answer not known		
5.	The t	exture in which large crystals enve	eloped	in a groundmass is called as
	(A)	Poikilitic	(B)	Porphyritic
	(C)	Ophitic	(D)	Directive
	(E)	Answer not known		

16. W	hich among the following is not a stru	ucture :	in folded regions?
(A) Phacolith	(B)	Batholith
(O	Laccolith	(D)	Chonolith
Œ			
17. W	hen a bedding or foliation present in	the co	ountry rock is squeezed by a magma to
gi	we rise to parallel or essentially rock	mass t	o the intruding pluton is called
(A	A) Xenoliths	(B)	Laccoliths
(C	Diapir	(D)	Phacoliths
(E	E) Answer not known	11 7 d	
		÷	
18. (F	Fe, Ti) ₂ O ₃ refers to		
(A	A) Apatite	(B)	Sphere
(0	Ilmenite	(D)	Zircon
(F	E) Answer not known		
19. V	iscosity is a measure of the resistanc	e to flo	w of a liquid; more viscous liquids are
(<i>t</i>	A) Solid immediately	(B)	Vapourised
((C) Fast mobile	(D)	Less mobile
(J	E) Answer not known		
20.	Quartz cannot co-exist with		
(A) Biotite	(B)	Olivine
(C) Hornblende	(D)	Augite
. (E) Answer not known		
AGUG/	/2021	6	

21.	geol	oldest bed occupy at the ogical age in ascending ordenown as	base and er. Such a sec	every upper layer will be younger in quence is uninterrupted in its deposition
	(A)	Angular unconformity		
	(B)	Disconformity		
	(C)	Conformable		
	(D)	Unconformity		
	(E)	Answer not known		
			•	
22.		ts which are developed perpe	endicular to	the fold axis are called
	(A)	Released joints	(B)	Tension joints
	(C)	Shear joints	(D)	Extension joints
: :	(E)	Answer not known		
23.	The	columnar joints are seen in		
	(A)	Sandstone	(B)	Hypabyssal rock
	(C)	Granite	(D)	Rhyolite
	(E)	Answer not known		
24.	Join	ts which are parallel to the s	trike of the b	edding of a sedimentary rock
	(A)	Strike joints	(B)	Dip joints
	(C)	Parallel joints	(D)	Bedding joints
	(E)	Answer not known		
25.		ripples which are symmetri ed as	ical, consist	of broad troughs and sharp crests are
	(A)	Oscillation ripples	(B)	Current ripples
	(C)	Box fold	(D)	Fan fold
	(E)	Answer not known		

6.	A —	fold is one which	both limbs are overturned.
	(A)	Chevron	
	(B)	Box	
	(C)	Fan	
	(D)	Monocline	
	(E)	Answer not known	
7.	On t	he basis of inter-limb angle,	how many folds have been classified?
	(A)	Five	(B) Four
N. T.	(C)	Three	(D) Two
	(E)	Answer not known	
8.	Mos	t common angle of normal fa	ult is
	(A)	30° to 45°	(B) 60° to horizontal
	(C)	45° to vertical	(D) 0° to 180°
	(E)	Answer not known	
1. 1			
9.	An e	entire orogenic belt may show	w a sharp bend, which is called
	(A)	Anticlinorium	(B) Synclinorium
	(C)	Orocline	(D) Homocline
,	(E)	Answer not known	
. Y			
0.	In a	n "Asymmetrical fold",	
	I.	The axial plane is inclined	
	II.		pposite direction at different angles
	(A)	Statements (I) and (II) are	
	(B)		d Statement (II) is incorrect
	(C)		and Statement (II) is correct
	(D)	Statements (I) and (II) are	
	(E)	Answer not known	

31.	Whi	ich of the follow	ing is	incorrectly pair	ed?	
	(A)	Hawaiian	-	Mild eruption		
	(B)	Strombolian	-	Violent erupti	on	
	(C)	Pelean	<u>-</u> :	Violent explos	ion	
	(D)	Plinian		Most violent e	xplos	sion
	(E)	Answer not k	nown			
32.	The	elastic rebound	theor	ry is postulated	by	
	(A)	Reid			(B)	Wegner
	(C)	Max Planck			(D)	Hooke
	(E)	Answer not k	nown			
	Į*		No.		*	
33.	Non	tectonic earthq	uakes	do not occur du	ie to	
	(A)	Avalanches			(B)	Huge Waterfalls
	(C)	Cyclone			(D)	Dams and reservoirs
	(E)	Answer not ki	nown		(2)	24110 date 1000110119
						* 10
84.	The	loop-like channe	els ar	e called,		
	(A)	Meanders				
	(B)	Ox-Bow lakes				
	(C)	Chutes				
	(D)	None of these				
	(E)	Answer not kn	iown			
5.	More	or less circular	coral	reefs enclosing	a lag	goon, is known as,
	(A)	Spits			(B)	Bars
	(C)	Barrier reef			(D)	Atoll
	(E)	Answer not kn	own			
	A SUCTION					

		rtion (A) : on (B) :			t develops on limestone e to Chemical weatheri	
			ıd (B) are true an			
	(A)					
	(B)			o) is not the	correct reason for (A)	
	(C)		but (B) is false			
	(D)	Answer not	nd (B) are false			
	(E)	Answer not	t KHOWH			
37.	Iden	tify the mine	eral in the blank	space of the	equation	
	2 Ka	$alSi_3O_8 + 2H_2$	$_{2}O + CO_{2} \rightarrow Al_{2}Si$	$_{2}O_{5}(OH)_{4} + 1$	$X_2CrO_3 + 4SiO_2$	
	Orth	oclase + Car	bonic acid \rightarrow —	+	pot. Carbonate + Silica	•
	(A)	Illite		(B)	Kaolinite	2. 140
	(C)	Montmoril	lonite	(D)	Halloysite	
	(E)	Answer not				
					.1 .	
38.	Whe		on is created by d		en the term used is	*
	(A)	Slack			Oasis	
	(C)	Yardangs		(D)	Ventifacts	
, 1) d	(E)	Answer no	t known	tur		
39.		nla	net has the lar	gest numbe	r of moons and moonl	ets in the sola
00.	syste		e las vie sur	8000		
	(A)	Saturn		(B)	Uranus	
	(0)	Jupiter		(D)	Neptune	
	(E)	Answer no	t known			
40.	Plar	netesimals ar	re basically			
	(A)	Semi-Solid	l	(B)	Solid	
	(C)	Gases and	vapours	(D)	Gases and solids	
	(E)	Answer no	ot known			
AGI	JG/202	21		10		

Consider the following statements:

41.		sensors are used to fine	d out the	e oil spills
	(A)	Thermal		
	(B)	Colour Infrared		
	(C)	Ultraviolet and microwave		
	(D)	Biometric		
	(E)	Answer not known		
42.	Wha	t is the name of first satellite lau	nched b	y India?
	(A)		(B)	Aryabhata
	(C)	Rohini	(D)	INSAT-1A
	(E)	Answer not known		
4 3.	Gran	nitic terrain can be recognized in	n the a	erial photos by means of ————
		of drainage pattern		
	(A)	Rectangular	(B)	Radial
	(C)	Dendritic and sickle shaped	(D)	Annual
	(E)	Answer not known		
	-()			
14.	Aval	anches are mass movements of w	hich of t	he following class?
	(A)	Slow Flowage	(B)	Rapid Flowage
	(C)	Sliding	(D)	Subsidence
	(E)	Answer not known		
5.	The l	blocks of rocks of varying size s	uddenly	crashing downwards from cliff along
		slop is called		
	(A)	Rock slide	(B)	Rock fall
	(C)	Debris slide	(D)	Earth flow
	(E)	Answer not known		

46.	The J	Jawahar Tunnel pass through —		— rocks.
	(A)	Lavas, Slates and Limestones		
	(B)	Gneiss, Limestone and Shales		
	(C)	Sandstone, Shale and Granite		
	(D)	Granite, Schist and Sandstones		
	(E)	Answer not known		
47.	In a	Dam near the top to let off excess	water	of the reservoir to the downstream side
	is cal	lled		
	(A)	Sluice	(B)	Cut-off wall
	(C)	Spillway	(D)	Diversion tunnel
	(E)	Answer not known		
48.	In so	oft rock, hydraulic rotary method is	suita	ble for ————
	(A)	50 – 100 m depth	(B)	100 – 150 m depth
	(C)	200 – 300 m depth	(D)	500 – 600 m depth
	(E)	Answer not known		
49.	Gro	uting may be described as		
	(A)	The injection of suitable mater	rial in	to the earth's crust to seal any open
		fissures		
	(B)			t or water saturation of a material
	(C)		upport	the pressure exerted by the material in
		which the tunnel is exerted		
	(D)	None of the above		
	(E)	Answer not known		

50.	The	crushing strength of dolerite is		
	(A)	1000 tons per square feet		
	(B)	600 tons per square feet		
	(C)	700 tons per square feet		
	(D)	400 tons per square feet		
	(E)	Answer not known		
51.	The	Neyveli lignite belongs to ————		ormations.
	(A)	Cretaceous		
	(C)	Cambrian	(B)	Jurrasic
	(E)	Answer not known	(D)	Tertiary
	(-)	2 mswc1 not known		
52.	The	Neyveli lignite seams are interbedd	ed wi	th the
	(A)	Limestones	(B)	Clay
	(CV	Sand stone	(D)	Shale
	(E)	Answer not known		
53.	The	occurrence of lignite in Gujarat is in		
	(A)	Ahmedabad	(B)	Jaisalmer
	(CV	Kutch	(D)	Baramulla
	(E)	Answer not known		
54 .	Comp	position of the mineral pyrolusite is		
	(A)	$\mathrm{Mn_2O_3H_2O}$	(B)	$\mathrm{Mn_3O_4}$
	(C)	MnCO ₃	(D)	MnO ₂
	(E)	Answer not known		

	Mech	nanica	l concer	tration	by river wat	er	
	(A)	Eolia	an Place	r		(B)	Eluvial Placer
	(C)	Allu	vial Pla	cer		(D)	Beach Placer
	(E)	Ansv	ver not	known			
	Diss	emina	tion ore	s are ch	aracterised l	ру	
	(A)	Pepp	er-and-	salt tex	ture		
	(B)	Colle	oform te	xture			
	(C)	Porp	hyritic	texture			
	(D)	Coar	rse texti	are 💮			
	(E)	Ansv	wer not	known			
	Mat	ch the	followin	ngs :			
			Zone				Sulphide type
	(a)			tion		1.	Chalcopyrite
		Zone of oxidation				2.	Native copper
	(b)	Zone of secondary enrichment			3.	Covellite	
	(c)	Zone of primary ore				Malachite	
	(d)	Level of oscillating water				4.	Maiacinte
		(a)	(b)	(c)	(d)		
	(A)	2	3	4	1		
	(B)	4	3 .	1	2		
	(C)	1	3	. 4	2		
	(D)	3	1	2	4		
	(E)	Ansv	ver not	known			
	Dia	mond	in kimb	erlite is	present as -		—— nature
	(A)	Seg	regated			(B)	Injected
	(C)		uted			(D)	Disseminated
	(E)	Ans	swer not	known			
	*						
GU	G/20	21				14	

- 59. The ore deposits formed at the end of magmatic differentiation are termed as
 - (A) Ortho tectic deposits
 - (B) Ortho magmatic deposits
 - (C) Metasomatic deposit
 - (D) Hydrothermal deposit
 - (E) Answer not known
- 60. Hardness of Tourmaline is between

$$(A)$$
 $7.0 - 7.5$

(B) 6.5 - 7.0

(C) 7.5 - 8.0

(D) 8.0 - 8.5

- (E) Answer not known
- 61. Chlorophalite is formed by
 - (A) A chromite formed by the alteration of quartz
 - (B) A kaolinite formed by the alteration of feldspar
 - (C) A chlorite formed by the alteration of volcanic glass
 - (D) A zircon formed by the alteration of quartz
 - (E) Answer not known
- 62. The iron rich variety of chlorite, that is commonly found in sedimentary iron ores is
 - (A) Prehnite

(B) Chamosite

(C) Apophyllite

(D) Arfred sonite

- (E) Answer not known
- 63. Zircon and Quartz usually occur as
 - (A) Unaltered minerals

(B) Altered minerals

(C) Insoluble minerals

(D) Soluble minerals

-1	(A)	Oceanite		(D)	Spinie		
	(C)	Augitite		(D)	Tachylite		
	(E)	Answer not known					
					•		
es ,	Mat	ch the following:					
65.				Orthorhomb	:.		
	(a)	Quartz	1.				
	(b)	Tridymite	2.	Hydrous sili	ca		
	(c)	Crystotalite	3.	Tetragonal			
	(d)	Opal	4.	Trigonal			
		(a) (b) (c)	(d)				
	(A)	4 1 3	2				
	(B)	4 3 1	2				
	(C)	4 2 3	1				
	(D)	3 4 1	2				
	(E)	Answer not known					
66.	Sele (A) (C) (E)	ect the correct extinction Straight extinction Symmetrical extinction Answer not know	n nction	Quartz from (B)			
.							
67.	The	sign of the ordinary	ray ar	nd extra ordina	ary in optical min	eralogy is	
	(A)	Ordinary ray is o					sitive
+	(B)	Ordinary ray is o					
	(C)	Ordinary ray is (-) Negative					
	(D)	Ordinary ray is (-) Negative	optica	lly (+) Positiv	ve and extraord	inary ray is	optically
	(E)		n				
						AND DESCRIPTION OF THE PERSON	

A soda-rich basaltic type in which albite or albite-oligoclase is the predominating

64.

Feldspar

		보이는 아들이 있는 것은 그런 그를 들어보고 있다. 동네를 받는 것으로 하는 것으로 하는 것으로 가장 하는 것이 없는 것이 없는 것이다.
68.	Ide	ntify the Non Silicate minerals arranged below in correct pair
	(A)	
	(B)	Hydroxide, Quartz, Feldspar, Mica, Garnet
	(C)	Carbonates, Mica, Garnet, Spinel, Feldspar
	(D)	Sulphides, Sulphates, Olivine, Fayallite, Forsterite
	(E)	Answer not known
69.	Prop	perty of Fluoroscence is
	(A)	A few minerals have the property of glowing or emitting light when they are exposed to radiation
	(B)	Minerals behave differently on heating to elevated temperature
	(C)	The light is emitted by mineral not during the act of exposure to radiation
1,	(D)	Some minerals an electric charge may be developed by heating
	(E)	Answer not known
70.	Hard	lness of a mineral is greater when
	(AN	the atoms or ions are smaller
	(B)	the valency is smaller
	(C)	the packing density is lesser
	(D)	the specific gravity is greater
	(E)	Answer not known
71.	Twin	crystals often appear to consist crystals symmetrically united, the individual
	cryst	als will be in the order of
	(A)	Five or more crystals (B) Four or more crystals
	(C)	Three or more crystals (D) Two or more crystals
. *	(E)	Answer not known
72.	Accor	ding to ————— law octahedral face is the Twinning Plane.
	(A)	Spinel (B) Rutile
	(C)	Japanese (D) Brazillian
	(E)	Answer not known

73.	Pick	out the odd pair.		
	(A)	a axis – brachy axis		
	(B)	prism – pyramids		
	(C)	b axis – macro axis		
4 1	(D)	c axis – vertical axis		
	(E)	Answer not known		
74.	The	only symmetry element exhibited b	y Axir	
	(A)	Centre of Symmetry	(B)	Plane of Symmetry
	(C)	Axis of Symmetry	(D)	Pseudo symmetry
	(E)	Answer not known		
±#				
-	m)	normal interfacial angle of two adj	acent t	etrahédral faces is
75.			(B)	90° 0' 00"
	(A)	109° 28' 16"	(D)	100° 04' 44"
7	(C)	60° 55' 43"	(D)	100 01 11
	(E)	Answer not known		
76.	Fin	d out the correct pair.		
	(A)	Beryl – Isometric Normal		
		Beryl – Monoclinic Normal		
	(C)	Beryl – Hexagonal Normal		
	(D)	Beryl - Orthorhombic Normal		
	(E)	Answer not known		
A				
77.	The	e type mineral for the Normal Class	s of Tet	ragonal system is
	(A)	Hornblende	(B)	Tourmaline
	(C)	Galena	(D)	Zircon
	(E)	Answer not known		
	* * * * * * * * * * * * * * * * * * * *			

H	low many classes are classi	fied in crystallograph	y?
(4	A) 34	(B) 32	
((C) 33	(D) 35	
(I	E) Answer not known		
M	filler indices for hexoctahed	lron crystal is	
(A	{3 2 1}	(B) {2.2	21)
(C	C) {2 1 1}	(D) {2 1	0}
(E	2) Answer not known		
Н	ow many faces are there in	Trapezohedron (h11)	
(A) 12	(B) 24	
(C) 48	(D) 32	
(E) Answer not known		
Th	e shells of foraminifera are		
(A)) Unichambered		
(B)	Multichambered		
(C)	Both Unichambered an	d Multichambered	
(D)	None of the above		
(E)	Answer not known		

82. The first formed Chamber in foraminifera shell is called as

(A) Protoconch

(B) Conch

(C) Proloculus

(D) Palacoconch

83.	Whic	h of the following is corr	ectly matche	ed?		
	I.	Productus -	Ordovician	1		
	II.	Orthis -	Carbonifer	ous		
	III.	Rhyconella -	Jurassic			
	IV.	Terebratula -	Triassic			
	(A)	İ		(B)	II ,	
	(C)	P iii		(D)	IV	
	(E)	Answer not known				
84.	In co	ompound Corals, the s	skeleton of	each	individual membe	rs of a colony is
	(A)	Theca		(B)	Corallite	
	(C)	Epitheca		(D)	Calyx	
	(E)	Answer not known				
85.	Hydi	rozoans are common in				
	(A)	- Fresh water		(B)	Marine	
	(C)	Wet lands		(D)	Hyper saline	
	(E)	Answer not known				
86.		en the early part of the A ook or curve, it is termed		nell i	s coiled and its later	part is in the form
	(A)	Lituitic cone				
	(B)	Baculitic cone	26			
	(C)	Gyrocera cone				
	(D)	Gyroceratic cone				
	(E)	Answer not known				

81.	The	e fossils of Graptolites are pre-	served as a	film of matter.
	(A)	Siliceous		
	(B)	Phosphatic		
	(C)	Carbonaceous		
	(D)	Both siliceous and Phospha	tic	
	(E)	Answer not known		
88.	Enb	ryonic part of graptolite colon	y is	
	(A)	Nema	(B	Sicula
	(C)	Autothica	(D) Virgella
	(E)	Answer not known		
89.	Whic	ch of the following conditions i	nfluence p	reservation?
	(A)	Geographic condition	(B)	Topographic condition
	(C)	Climatic condition	(D)	All of the above
	(E)	Answer not known	•	
90.	TP:	1. f		
<i>3</i> 0.	Fossi Hima	is of life discove dayas.	ered from	limestone formation at great heights of
	(A)	Marine	(B)	Fluvial
	(C)	Wind	(D)	Glacial
	(E)	Answer not known		
91.	Comp is kno	lete dissolution of original shown as	ell and de	posit some other substance in its place
	(A)	Petrifaction	(B)	Impregnation
	(C)	Distillation	(D)	Leaching
	(E)	Answer not known		

	(A)	Cuddapah system			
	(B)	Vindhyan system			
	(C)	Gondwana system			
	(D)	Aravalli system			
	(E)	Answer not known			
93.		youngest elements of the Provn as	ecambrian l	Basement of the Dha	rwar region are
	(A)	Sargur Schist			
	(B)	Closepet Granite			
	(C)	Peninsular Gneissic complex			
	(D)	Bundelkhand Gneiss			
	(E)	Answer not known			
94.	The	Delhi system is intruded by			
		Jalor granite	(B)	Idar granite	
	(A) (C)	Malani granite	(D)	Erinpura granite	
	(E)	Answer not known			
	(15)	Answer not known			
95.	The	most common rock of the uppe	er Vindhyan		
	(A)	Shale	(B)	Limestone	
	(C)	Sanstone	(D)	Gneiss	
	(E)	Answer not known			
96.	The	thickness of lower Vindhyans	group is		
	(A)	1000 m	(B)	500 m	
***	(C)	∕1300 m	(D)	2000 m	
	(E)	Answer not known			
	, , ,				
AGI	UG/20	21	22		

Anthracite variety of coal is available in

97.	Half	-Life period of $U^{ m ^{238}}$ i
	(A)	$7.675 \times 10^9 \mathrm{years}$
	(B)	$5.89 \times 10^9 \mathrm{years}$
	(C)	$4.468 \times 10^9 \mathrm{years}$
	(D)	$5.678 \times 10^9 \mathrm{years}$

(E)

- 98. Establishing equivalence in rock formations with regard to their geological age is termed as
 - (A) Comparison(B) Correlation(C) Homotaxis(D) Nomenclature
 - (E) Answer not known

Answer not known

- 99. Find out the system which is not grouped under TERTIARY

 (A) Pliocene (B) Miocene
 - (C) Permian (D) Eocene
 - (E) Answer not known
- 100. Fundamental concept of historical geology is
 - (A) Lithification
 - (B) Correlation
 - (C) Sedimentation
 - (D) Deposition
 - (E) Answer not known

101.		minerals are able to asser	t thei	r proper crystalline form, even against
	(A)	Crystalloblastic	(B)	Idioblastic
	(C)	Xenoblastic	(D)	Palimpsest
	(E)	Answer not known		
102.		rock with alkali feldspar + pla position is	igiocla	ase + biotite + hornblende mineral
	(A)	Granulites	(B)	Amphibolites
	(C)	Greenstone	(D)	Charnochite
	(E)	Answer not known		
103.	The	Augen structure is produced due to		metamorphism.
	(A)	Regressive	(B)	Cataclastic
	(C)	Regional	(D)	Dynamo-thermal
	(E)	Answer not known	*	
104.	Whi	ch is high temperature zone in meta		
	(A)	Epizone	(B)	Mesozone
	(C)	Kata zone	(D)	Isograd zone
	(E)	Answer not known		
				1 C A C C
105.			examp	oles for Anti-stress minerals.
	(A)	Chlorite and Kyanite	(By	Olivine and Andalusite
	(C)	Talc and Muscovite	(D)	Hornblende and Quartz
	(E)	Answer not known		
.(
106.	Mac	culose structure is typically develope	d in a	rgillaceous rocks under
	(A)	Cataclastic metamorphism	(B)	Plutonic metamorphism
•	(C)	Thermal metamorphism	(D)	Metasomatism
	(E)	Answer not known		

107		is a rock of earthy and	l clay lik	e with Oolitic and Pilolitic structures.
	(A)		(B	
	(C)	Regolith	(D	
	(E)	Answer not known		
108.		is a white kaolinite mi	xed with	fragments of quartz, feldspar and mica
	(A)		(B)	
	(C)	China clay	(D)) Marl
1.	(E)	Answer not known		
109.	Whi	ch is Argillaceous limestone?		
	(A)	Chalk	(B)	Kankar
	(C)	Pelagic limestone	(D)	Marl
	(E)	Answer not known		
110				
110.		ing of particles is best in ———	se	diments.
	(A)	Fluvial	(B)	Sand dune
	(C)	Beach	(D)	Loess
	(E)	Answer not known		
11.	Α			
11.		ng the following, shale have both	clastic a	and non-clastic sources.
	(A)	Transported shale	(B)	Residual shale
	(C)	Hybrid shale	(D)	Chloritic shale
	(E)	Answer not known		
12.	The	grain size of silt deposits are		
	(A)	0.1 mm to 0.01 mm	(D)	
	(C)	2 mm to 1 mm	(B)	1 mm to 0.1 mm
	(E)	Answer not known	(D)	0.5 mm to 0.25 mm

	CHILDRAN CONTRACTOR	~ 7	1		
113. N	arita ic	9 1791	abroic i	rock in	wnich

S. T. STREET	A 111 Cart S 5 Cart 11	A
CAN	OPX >	CDV
(A)	ULV	CLV

(B) OPX < CPX

(C)
$$OPX = CPX$$

(D) OPX absent

114. Match the following volcanic rock equivalent for plutonic:

(a) Syenite

1. Dacite

(b) Diorite

- 2. Andesite
- (c) Grano diorite
- 3. Rhyolite

(d) Granite

4. Trachyte

- (a)
- (b) (c)
 - (d)

- (A) 2
- 3 1
- (B) 1
- 2 3
- (C) 4
- 2 1
- (D) 3
- $egin{array}{cccc} 2 & 1 \\ 1 & 2 \end{array}$
- 4

4

3

(E) Answer not known

4

115. Which of the following mineral is low silication mineral?

(A) Biotite

(B) Orthoclase

(C) Augite

(D) Hornblende

(E) Answer not known

116. Soda rich basaltic types are called on

(A) Spilite

(B) Andesite

(C) Rhyolite

(D) Phonolite

117	. Av	ariety of equigranular texture	is		
	(A)	Porphyritic	(B	Panidiomorphic	
	(C)	Poikilitic	(D		
	(E)	Answer not known			
118.	The	holocrystalline texture is char	acteristic	of	
	(A)	Volcanic igneous rocks			
	(B)	Hypabyssal igneous rocks			
	(C)	Plutonic igneous rocks			
	(D)	Volcanic lavas			
	(E)	Answer not known			
	(A) (C) (E)	Granular texture Optitic texture Answer not known	(B) (D)	Intergranular texture Directive texture	stamsation are
120.	Reac	tion rims produced by primary	maamatic	a magatian is selled	
	(A)	Coronas			
	(C)	Myrmekite	(B) (D)		
	(E)	Answer not known	(ப)	Enclaves	
	Ţ				
21.		—— is a form of igneous intr	usion in ui	nfolded region.	
	(A)	Phacolith	(B)	Batholith	
	(C)	Chonolith	(D)4	Laccolith	
	(E)	Answer not known			

122.	Mate	ch the following:			
	(a)	Compressive stress	1.	strain	
	(b)	Tensile stress	2.	normal component push apart	
	(c)	Shear	3.	normal component push together	
	(d)	Distortion	4.	tangential component	
		(a) (b) (c)	(d)		
	(A)	1 2 3	4		
	(B)	2 3 1	4		
	(C)	4 1 2	3		
	(D)	3 2 4	1		
	(E)	Answer not known			
			,		
123.	The	distance between the	succes	ssive crest is called	
	(A)	Axial plane		(B) Amplitude	
	(C)	Wave length		(D) Plunge	
	(E)	Answer not known			
1 6	(11)	THIS WOT HOU MAD IN THE			
	. y-				
124.	In g	eology, a compression	is tre:	ated as	
	(A)	Positive		(B) Negative	
	(C)	Neutral		(D) Couple	
	(E)	Answer not known			
	X				
125.		o overturned beds, the	ne top	p of beds can be identified by using	
	(A)	Faults		(B) Stalactite and stalagmite	
		Pillow structure		(D) Orbicular THE QUESTION AND ANSWER ARE PLACED BEFORE THE EXPERT COMM	
	(C)		@ ÷ c	FOR FINAL DECISION.	
	(E)	Answer not known		கள்வி மற்றும் விடை இறுதி முடிவிற்காக புநர் குழுவின் முன் வைக்கப்பட உள்ளது.	
ACIT	CION			98	†

	(A)	Down thrust	(B)	Over thrust
	(C)	Up thrust	(D)	Under thrust
	(E)	Answer not known		
F. 4	4.79			
127.	A fo	old characterised by well-defined, sl	narp hi	inge point is called
	(A)	Conjugate fold	(B)	Chevron fold
	(C)	Cuspate fold	(D)	Cylindrical fold
	(E)	Answer not known		
128.	Plur	nging fold is a		
	(A)	Fold with fold axis horizontal		
	(B)	Fold with fold axis only vertical		
	(C)	Fold with fold axis inclined		
	(D)	This is not a type of fold		
	(E)	Answer not known		
		and the second second	4	
29.	The	strata that din in ana divertion at a		
	(A)	strata that dip in one direction at a Kink bands		
	(C)	Fan fold	(B)	Isoclinal folds
	(E)	Answer not known	(1)	Homocline
30.	Ina	recumbent fold, the axial plane is		
	(A)	Vertical		Horizontal
	(C)	Both horizontal and vertical	(B)	Inclined
	(E)	Answer not known	(D)	rucined
	(4)	ZIMOWEL HOURINGWII		

The thrust faults in which the foot wall has been the active element.

191.	roru	s of continental proportions are		
	(A)	Tens of miles wide	(B)	Hundreds of miles wide
	(C)	Thousands of miles wide	(D)	Millions of miles wide
(**	(E)	Answer not known		
132.	Fold	that has younger rocks in the cent	re is c	alled as
104.				Anticline
	(A)	Syncline	(B)	
	(C)	Trough	(D)	Crest
	(E)	Answer not known		
133.	A py	ramid-shaped peak formed by glac	ial ero	sion is a
	(A)	Fiord	(B)	Cirque
	(C)	Medial moraine	(D)	Horn
	(E)	Answer not known		
134.	Whi	ch one is not a transform plate bou	ndary?	
	(A)	Subduction Zone		
	(B)	Ridge-Trench margin		
	(C)	Ridge-Ridge margin		
	(D)	Trench-Trench margin		
	(E)	Answer not known		
		Construction of the second		
125	Q.11.	diffied numeralisation debuts on ground	aro ocl	llod as
135.		dified pyroclastic debris on ground		
	(A)	Tephra	(B)	Lapilli
	(C)	Tuff	(D)	Pumice
	(E)	Answer not known		

100.	Con	sider the 10110	owing statements:		
	Asse	ertion (A):	Stack and Hook	are erosi	onal features of sea
	Rea	son (B) :	They develop an	d withsta	and due to some resistant rocks
	(A)	Both (A) and	d (B) are true (B) i	s correct	reason for (A)
	(B)		d (B) are true (B) i		. 22m (Self Co. 14.) : 그리고 전혀든 경험하는 것으로 되었습니다. 그리는 사이지 않는 이 나를 가는 살이다. (Self Co. 14.) 다른 사이트를 다 살아 되었습니다. [
	(C)	(A) is true (I			
	(D)	Both (A) and	d (B) are false		
	(E)	Answer not	known		
137.	The	removal of par	rticles of dust and	sand by	strong winds is called
	(A)	Abrasion		(B)	Depletion
	(C)	Deflation		(D)	Aeration
	(E)	Answer not l	known		
•					
138.	The o	drainage patte tural control i	ern that develops i is known as	upon unil	form resistant rocks and implies lack of
	(A)	Rectangular		(B)	Barbed
	(C)	Trellis		(D)	B endritic
	(E)	Answer not k	known		
39.	Wate	r draped in fr	ractures, expands	by 9.0%	in volume when freezes, thus exerting
	press	ure to the wa	alls and widening t	the fractu	ure, results in the disintegration of the
	rock.	This phenome	enon is known as		
	(A)	Exfoliation			
	(B)	Root wedging	3		
	(C)	Frost wedgin	\mathbf{g}		
	(D)	Oxidation			
	(E)	Answer not k	nown		

Half-	life period of carbon-14 is		
(A)	5730 years	(B)	5250 years
(C)	6520 years	(D)	6340 years
(E)	Answer not known		
Wha	t will be the temperature at the top	of the	e mantle?
(A)	around 4000° C	(B)	around 2000° C
(C)	around 1560° C	(D)	around 870° C
(E)	Answer not known		
Neb	ular hypothesis on origin of earth is	an im	proved one of hypothesis proposed by
(A)	Sir William Herschell	(B)	Laplace
(C)	Kant	(D)	Sir James Jeans
(E)	Answer not known	Y TYPE	
Whi	ch planet is characterized with a re	trogra	de spin?
(A)	Venus	(B)	The Earth
(C)	Mars	(D)	Mercury
(E)	Answer not known		
The	expansion of 'IRSS' is		
(A)	Indian Rare Sensing		
(B)			
(C)	Indian Meteorological sensing		
(D)	, (A) and (C) are correct		
(E)	Answer not known	***	
	(A) (C) (E) What (A) (C) (E) Whit (A) (C) (E) (D)	(C) 6520 years (E) Answer not known What will be the temperature at the top (A) around 4000° C (C) around 1560° C (E) Answer not known Nebular hypothesis on origin of earth is (A) Sir William Herschell (C) Kant (E) Answer not known Which planet is characterized with a ref (A) Venus (C) Mars (E) Answer not known The expansion of 'IRSS' is (A) Indian Rare Sensing (B) Indian Remote Sensing Satellite (C) Indian Meteorological sensing (D) (A) and (C) are correct	(A) 5730 years (B) (C) 6520 years (E) Answer not known What will be the temperature at the top of the (A) around 4000° C (C) around 1560° C (E) Answer not known Nebular hypothesis on origin of earth is an im (A) Sir William Herschell (B) (C) Kant (C) Kant (D) (E) Answer not known Which planet is characterized with a retrogration (A) Venus (B) (C) Mars (C) Mars (C) Mars (D) (E) Answer not known The expansion of 'IRSS' is (A) Indian Rare Sensing (B) Indian Remote Sensing Satellite (C) Indian Meteorological sensing (D) (A) and (C) are correct

145.	Dur	ring tunneling, geological profile is I	orepa	red to know
	(A)	Structure of rocks		
	(B)	Types of rocks		
	(C)	Centre line of the proposed tunne	el .	
	(D)	Dip and strike of the rocks		
	(E)	Answer not known		
46.	The	Arch dam is best suitable for in wh	ich si	te?
	(A)	Flat lands	(B)	Plateaus
	(C)	Narrow Valleys	(D)	Very wide valleys
	(E)	Answer not known		
47.	"Wat	ter" Which is on the down stream si	de of	the dam is known as?
	(A)	Reservoir water	(B)	Tail water
	(C)	Surface water	(D)	Parched water
	(E)	Answer not known		
48.	Whic	ch dam in India has distincation of b	eing	the longest earth dam?
	(A)	Rihand dam	(B)	Hirakud dam
	(C)	Bhakra dam	(D)	Sikidari dam
	(E)	Answer not known		
1 9.	Iduk	ki dam in Kerala is an example for		
· .	(A)	An arch dam	(B)	Butress dam
10 A	(C)	Rock hill dam	(D)	Gravity dam
	(E)	Answer not known		

150.	The instrument anger used for		
	(A) Boring shallow depth	(B)	Boring deep well
	(C) More than 100 ft	(D)	Both (B) and (C)
	(E) Answer not known		
151.	If closed contours have increased ———— on map	ing value	away from the center, it shows a
	(A) Depression	(B)	Ridge
	(C) Hillock	(D)	None of the above
17	(E) Answer not known		
152.	Silica sand is produced from ———	——— dis	trict in Tamil Nadu.
	(A) Chengalpattu	(B)	Salem
	(C) Madurai	(D)	Theni
	(E) Answer not known	le el	
153.	Consider the following statement:		
	Assertion (A) : Chrysotile asbest	tos occurs i	n serpentinized limestone.
			ne were converted to serpentine by
	fibrous form.	ions and v	indergo molecular rearrangement into
	(A) Both (A) and (R) are false		
	(B) Both (A) and (R) are true		
	(C) (A) is true and (R) is false		
	(D) (A) is false and (R) is true		
	(E) Answer not known	,	

154.	The	e hardness of Magnesite is			
	(A)	4.5 to 5.5	(B)	5.5 to 6.5	
	(C)	3.5 to 4.5	(D)	2.5 to 3.5	
	(E)	Answer not known			
155.	Mag	gnesite is believed to be an altera	tion proc	luct of	
	(A)	Diorite	(B)	Dunite	
	(C)	Dolerite	(D)	Diamictite	
	(E)	Answer not known			
156.	The	Gold-Bearing lodes are confined	to the co	ntacts of	— rock varieties in
	Kola	ar Gold field)	
	(A)	Gneisses	(B)	Amphibolites	
	(C)	Ferruginous Quartzites	(D)	Conglomerates	
	(E)	Answer not known			
157.	Tran	asportation of material in contact	with sur	face is called as	
	(A)	Rolling	(B)	Solution	
	(C)	Abrasion	(D)	Attrition	
	(E)	Answer not known			
158.	Com	mon salt is formed through ——	J	process.	
	(A)	Sublimation	(B)	Evaporation	
	(C)	Dissemination	(D)	Segregation	
	(E)	Answer not known			

159.		recrystallisation temperature of cop		
	(A)	300°C	(B)	450°C
	(C)	350°C	(D)	550°C
	(E)	Answer not known		
160.	Mine	ral deposits that have formed simu	ıltaneo	ous with the enclosing rock is known as
	(A)	Epigenetic deposits	(B)	Endogenetic deposits
	(C)	Syngenetic deposits	(D)	Exogenetic deposits
	(E)	Answer not known		
161.	Baux	rite is formed by the process of		
	(A)	Mechanical concentration		
	(B)	Residual concentration		
	(C)	Magmatic concentration		
	(D)	Sublimation		
	(E)	Answer not known		
162.	Teno	or of silver is		
	(A)	10 Ounce/Tonne	(B)	50 Ounce/Tonne
	(C)	75 Ounce/Tonne	(D)	100 Ounce/Tonne
,	(E)	Answer not known		
163.		or of Platinum is	_	
		0.7 %	(B)N	0.1 Ounce/Tonne
	(C)	0.8 %	(D)	10 Ounce/Tonne
	(E)	Answer not known		

36

AGUG/2021

164.	Chemical	composition	of Pyrone is
The same	Chemical	composition	or r yrope is

- (A) Ca₃ Al₂ Si₃ O₁₂
- (C) Ca₃ Cr₂ Si₃ O₁₂
- (E) Answer not known

- (B) $\operatorname{Mn}_3 \operatorname{Al}_2 \operatorname{Si}_3 \operatorname{O}_{12}$
- (D) Mg₃ Al₂ Si₃ O₁₂

165. Feldspar atomic structure is

- (A) Continuous three-dimensional network type
- (B) Discontinuous three-dimensional network type
- (C) Continuous two-dimensional network type
- (D) Discontinuous two-dimensional network type
- (E) Answer not known

166. Find out the K-Feldspar mineral

(A) Albite

(B) Oligoclase

(C) Orthoclase

(D) Anorthite

(E) Answer not known

167. Tektosilicates has

(A) Chain structure

- (B) Double chain structure
- (C) Framework structure
- (D) Single chain structure

(E) Answer not known

168. Match the following:

- (a) Orthorhombic
- 1. Hedenbergite
- (b) Monoclinic
- 2. Bronzite

(c) Alkali

3. Pectolite

(d) Triclinic

4. Johannsenite

- (a)
- (b) (c)
- (A) 1 2
- (d) 3

1

1

3

- (B) 2
- 4 3

- (C) 4
- 2
- (D) 2 1 4

4

3

(E) Answer not known

169.		crystals transmit light v	vith diffe	erent velocities in different direction.
	(A)	Isometric	(B)	Isotropic
	(C)	Anisotropic	(D)	Garnet
	(E)	Answer not known		
170.	Bered	ck compensator is		
	(A)	also known as quarter-wave pla		
	(B)	useful for the determination of	interfere	ence colour
	(C)	also known as sensitive – tint p		
	(D)	a accessory device made of calci	ite	
	(E)	Answer not known		
	4 1			
101	.m. (, n		fthin agation of rooks and minerals?
171.				of thin section of rocks and minerals?
	(A)	Compound microscope	(B)	Petrological microscope
	(C)	Reflecting microscope	(D)	Binocular microscope
	(E)	Answer not known		
172.	Amo	ng the following, which mineral	is having	g silky luster?
	(A)	Topaz	(B)	Ziron
	(C)	Asbestos	(D)	Quartz
	(E)	Answer not known		
	(/			
173.	Whic	h one of the following is not corr	ectly ma	tched:
	I.	Highly magnetic - Fe	eldspars	
	II.		ematite	
	III.		ourmalin	ne
	IV.		uartz	
		1		
	(A)	7	(B)	II
	(C)	III	(D)	IV .
	(E)	Answer not known		

- 174. Find out the incorrect pair.
 - (A) Fluorite Gypsum
 - (B) Fluorite Garnet
 - (C) Fluorite Galena
 - (D) Fluorite Pyrite
 - (E) Answer not known
- 175. Choose the incorrect pair.
 - (A) Pyroxene Pyrite
 - (B) Pyroxene Orthoclase
 - (C) Pyroxene Epidote
 - (D) Pyroxene Gypsum
 - (E) Answer not known
- 176. Match the following of the orthorhombic crystal system:
 - (a) Macro Pinacoid
- 1. c-Pinacoid
- (b) Brachy Pinacoid
- 2. hkl
- (c) Basal Pinacoid
- 3. a-pinacoid
- (d) Pyramids
- 4. b-pinacoid
- (a) (b) (c) (d) (A) 3 1 4 2
- (A) 3 1 4 2 (B) 4 3 1 2
- (G) 3 4 1 2
- (D) 4 1 3 2
- (E) Answer not known
- - (A) Rhombohedral Hemimorphic Hexagonal
 - (B) Normal class Hexagonal
 - (C) Normal Isometric
 - (D) Hemimorphic Orthorhombic
 - (E) Answer not known

178.	All Id	orms are general form in		
	(A)	Cubic system	(B)	Hexagonal system
	(C)	Monoclinic system	(D)	Triclinic system
	(E)	Answer not known		
179.		e of the form each of whose six	teen s	similar faces meets the three axes a
	(A)	Ist order pyramid	(B)	II nd order pyramid
	(C)	Ditetragonal pyramid	(D)	Prism
	(E)	Answer not known		
180.	Choc	ose the correct pair.		
	(A)	Cuprite – Gypsum		
	(B)	Albite – Anorthite		
	(C)	Zircon – Garnet		
A., 1	(D)	Beryl – Borite		
	(E)	Answer not known		
	(12)	This wer not known		
181.	Grad	de of symmetry of Asymmetrical cla		
	(A)	20	(B)	10
	(CV	-0-	(D)	5
	(E)	Answer not known	4	
182.	Spin	nel law of twinning ———— is	the tw	rinning place.
	(A)	Cube face (100)	(B)	Octahedral face (111)
	(C)	Dodecahedral face (110)	(D)	Tetrahexahedron (hko)
* 72.5 *	(E)	Answer not known		

40

AGUG/2021

183.	The	class Echinoids are exclusively		and	forms.
	(A)	Fresh water and shallow living			
	(B)	Marine and bottom dwelling			
	(C)	Terrestrial and bottom dwelling			
	(D)	Lacustrine and shallow			
	(E)	Answer not known	1. The state of th		
	**				
184.	In, t	crilobites, the central segment run	ning	from a point at or	r near the anterior
1	mar	gin to the Posterior extremity is ter	med		
	(A)	Doublure	(B)	Thorax	
	(C)	Pleural lobe	(D)	Axial lobe	
	(E)	· Answer not known			
185.	In Tr	rilobites, the most primitive suture l	ine is	described as	
	(A)	Ophisthoparian	(B)	Hypoparian	
	(C)	Gonatoparian	(D)	Proparian	
	(E)	Answer not known			
86.	The	teeth, sockets and other associated	d stru	actures in pelecypo	da are collectively
	terme	ed as			
	(A)	Surface Sculpture			
	(B)	Shell Structure			
	(C)	Ostracum			
	(D)	Dentition			
	(E)	Answer not known			

187.	Whie	ch of the following statements are	correct	?			
	I.	The subclasses Nautiloidea and	Ammoi	noidea are grouped as 'Tetrabranch			
	II.	The subclass Nautiloidea have 1	4 order	rs			
	III.	The subclass Ammonoidea have 4 orders					
	(A)	Only I and II are correct					
	(B)	All are correct					
	(C)	Only II and III are correct					
	(D)	Only I and III are correct					
1.0	(E)	Answer not known					
188.	Card	lita beaumonti is an Index fossil fo	r	age.			
	(A)	Upper Triassic					
	(B)	Lower Carboniferous					
	(C)	Upper Cretaceous					
	(D)	Lower Eocene					
	(E)	Answer not known					
189.		calyx is the depression which is pr					
	(A)	Foraminifera		Ostracoda			
	(C)	Corallite polyp	(D)	Brachiopods			
	(E)	Answer not known					
190.	The	successive whorls of gastropoda lie	in mu	itual contact along a line is called			
	(A)	Apex	(B)	Spire			
	(C)	Callus	(D)	Suture			
	(E)	Answer not known					

	(A)	Trails	(B)	Burrow
	(C)	Tubes	(D)	Steinkerns
	(E)	Answer not known		
*				
192.	Wha	at is the general dip for cretaceous	of Tric	hinopoly?
	(A)	N-N-E to S-S-W at low angle		
	(B)	E-S-E at low angle		
	(C)	N-N-E to S-S-W at high angle		
	(D)	E-S-E at high angle		
	(E)	Answer not known		
	N 3 / 2 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 /			
193.	Cud	dalore sandstone generally like un	confor	mably over the cretaceous rocks, Uppe
		dwanas or gneisses which represen		
	(A)	Mio-Pliocene	(B)	Lower Pleistocene
	(C)	Upper Cretaceous	(D)	Upper Gondwana
	(E)	Answer not known		
*				
194.	Depo	osits of Gondwana sequence belong	s to —	origin.
	(A)	Marine		Fluvio-Marine
	(C)	Fluviatile	(D)	Deltaic
	(E)	Answer not known	· · ·	
195.	Talcl	hir boulder beds are of		
	(A)	Marine origin	(B)	Glacial origin
	(C)	Aeolian origin	(D)	Fluvial origin
	(E)	Answer not known	(D)	Tiuviai Origini
	(13)	THISWEL HOLKHOWH		

Internal moulds and cast are collectively termed as

191.

100.	1116	most primitive the occur in which sy		
	(A)	Cuddapah	(B)	Dharwar
	(C)	Archean	(D)	Vindhyan
	(E)	Answer not known		
	v			
197.	In pa	apaghani group, the lower formation	is na	amed as
	(A)	Vempalle shales	(B)	Gulcheru Quartzite
	(C)	Nagri Quartzite	(D)	Cumbum shales
	(E)	Answer not known		
198.	Bune	delkhand Gneiss or Mysore Gneisses	s are :	as old as
•	(A)	2500 Million years	(B)	1800 Million years
	(C)	1600 Million years	(D)	1000 Million years
	(E)	Answer not known		
199.	Chro	omite deposits in Tamil Nadu are as	sociat	ed with
	(A)	Anorthosites of Kadavur	* .	
	(B)	Anorthosites of Sittampundi		
	(C)	Anorthosites of Chalkhills		
•	(D)	Both (B) and (C)		
	(E)	Answer not known		
) Mod				
200.	Tho	whole suite of rocks of Sivanmalai in	Ton	iil Nadu are characterized by
200.		Na rich feldspars	1 1411	iii ivada are enaracterisca by
	(A)			
	(B)	Ca rich feldspars		
	(C)	Ca and Na rich feldspars		
	(D)	Ba rich feldspars		
	(E)	Answer not known		

AGUG/2021 48